Fire-size dependent factors to describe occurrence in Mediterranean Forests

Marina Peris-Llopis, José Ramón González-Olabarria, Blas Mola-Yudego

marinp@uef.fi

Forest fires in Mediterranean Europe

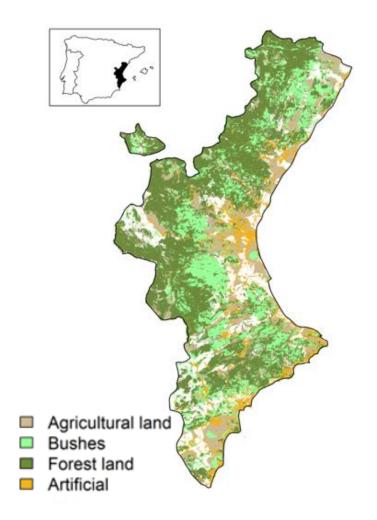
430 000 ha, 57 000 fires

Damages to forest structure and functions

Economic and ecologic losses, human casualties

Forecast: increase in frequency and burnt area, extreme events

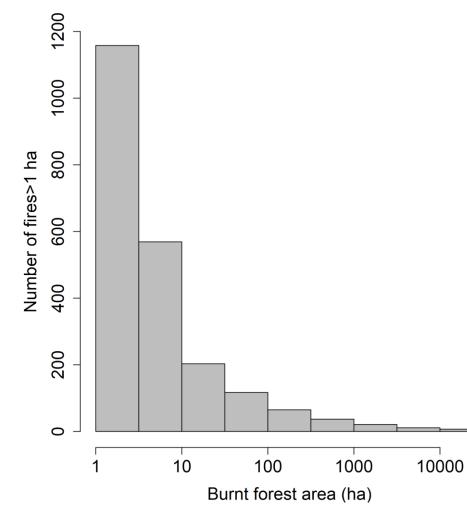
Aim: address the potential differences in fire occurrence related to the dimension of the final burnt area


Study area: Eastern Spain

Comunitat Valenciana

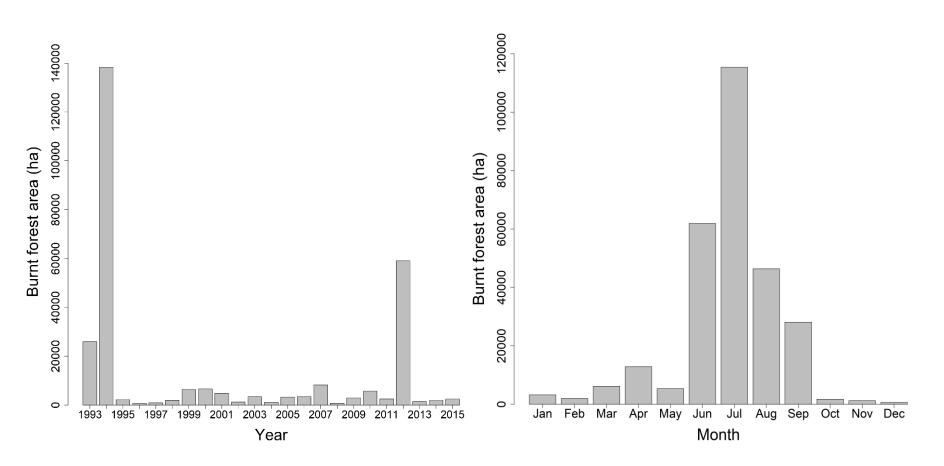
5 million inhabitants in 23 255 km²

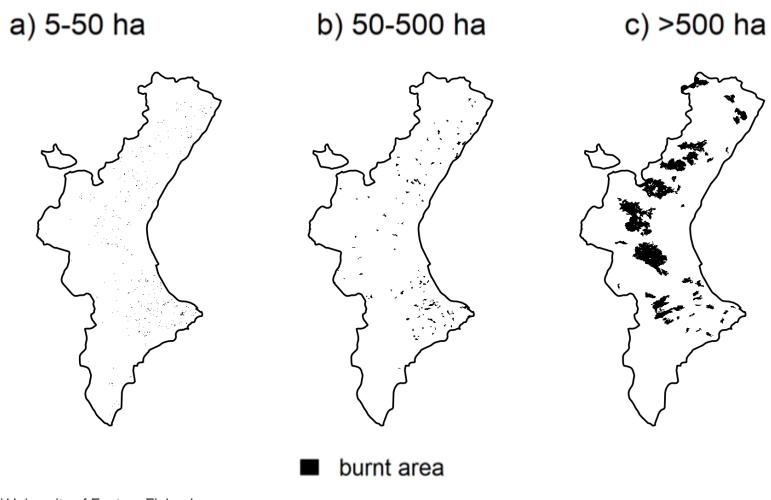
1.3 million ha of forest land (56%) *Pinus halepensis* dominated stands


3rd region with more large fires and 2nd in relative burnt forest area by large fires (87%)

Data sources

- Forest fires data (1993-2015) Forest fires prevention service
- Spanish Forest Map (1:50 000)
- **DMT200** (1997-2006)
- Population and roads maps



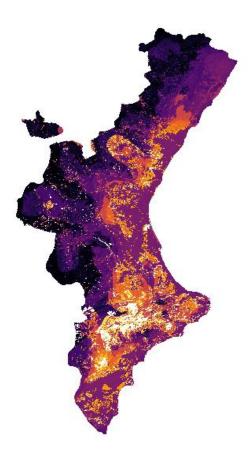


10 722 fires 301 483 ha burnt

285 024 ha of forest burnt22% of the forest land

Negligence and accidental fires 54% of burnt forest Natural fires 24%

Fire size (ha)	5-50	50-500	>500
N	585	146	59
	5.4%	1.3%	0.5%
Burnt forest surface (ha)	7968	23 247	248 653
	2.7%	8%	87%
Mean burnt surface (ha)	13.6	159	4214.4
Forest formation	P. halepensis	P. halepensis	P. halepensis
Fuel type	Low vegetation cover	Bushes/small trees	Bushes/small trees
Mean relative humidity (%)	41	40	34
Mean max temperature (°C)	15	16.5	21
Altitude (m)	414.6	471	617
Slope (%)	17	20.3	16.8
Population density (hab km ⁻²)	37.4	20.7	9.2


Forest classification

Variables	Classes
Altitude (N=5)	0-200 m, 200-600 m, 600-1000 m, 1000-1400 m, 1400-2100 m
Slope (N=5)	<3%, 3-12%, 12-20%, 20-35%, >35%
Aspect (N=4)	315-45º (North), 45-135º (East), 135-225º (South), 225-315º (West)
Fuel (N=5)	Vegetation cover <20%, Pasture, Bushes and small trees (height < 8-10 m), Medium trees (height > 8-10 m and diameter < 20 cm), Mature trees (diameter > 20 cm)
Species (N=5)	Tree coverage <20%, Pine, Oak, Pine and Oak mixture, Other species
Population (N=3)	Population density < 25 hab km ⁻² , 25-100 hab km ⁻² , > 100 hab km ⁻²
Road density	0-50 km km ⁻² , 50-100km km ⁻² , 100-150km km ⁻² , 150-200km km ⁻² ,
(N=5)	> 200 km km ⁻²

Forest classification

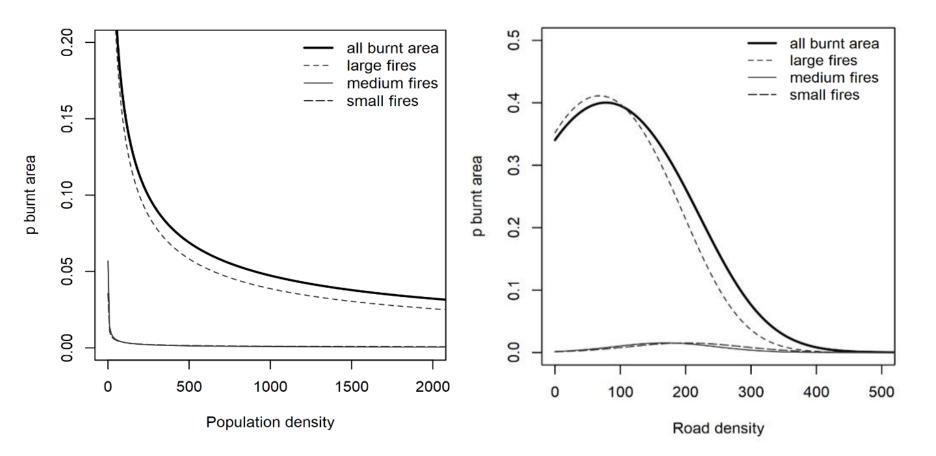
- Altitude
- Slope
- Species
- Fuel
- Population
- Roads

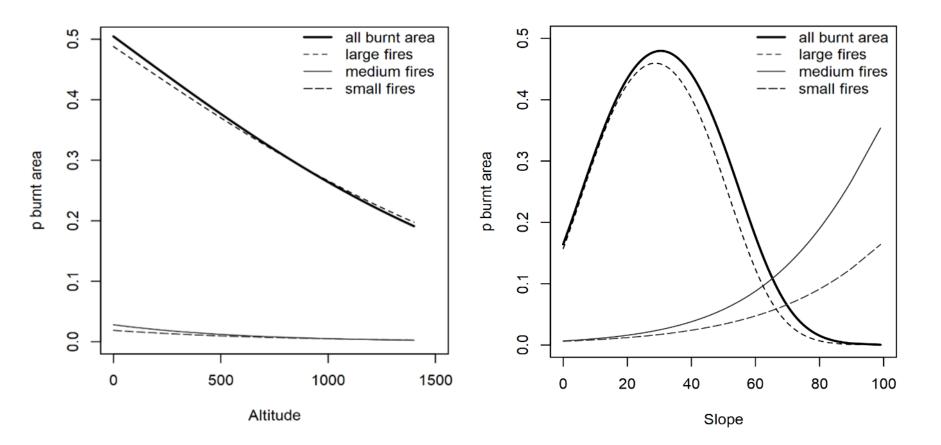
Proportion of burnt and non-burnt strata

Statistical modelling

• Weighted Generalized Linear Models

$$y_i \equiv \ln\left(\frac{p_i}{1-p_i}\right) \equiv X_i^t \beta + \varepsilon_i$$


4 Models → Small, Medium, Large, All


• Pseudo-R²

Results

<u>Species</u>	<u>Fuel</u>	<u>Topography</u>	<u>Accessibility</u>
Pine as a fire-prone species, positively related to large fires	Presence of bushes with small trees was positively related to all fire sizes	Where there are steeper slopes, there is less area burnt	The higher road and population density, the lower the proportion of burnt
Pine-Oak mixture was positive for large	The dominance of	Altitude negatively related to large fires	area
fires	medium and mature trees was negatively	East aspect was the	Small fires occurred in populated and
Oak not significant	related to all fire sizes occurrence	only significant	accessible areas (early detection)
	Pasture positive for small fires		Large fires in isolated areas

pseudo R² : Small 0.14, Medium 0.22, Large 0.55, All 0.57

Conclusions

- There are differentiated effects of these variables between small and large fires
 - Small fires: accessibility
 - Large fires: species and fuel composition

Allocation of prevention efforts depending on the occurrence of small, medium and large fires

Some of these variables can be influenced through forest management
→ Need to integrate fire risk into forest planning

Marina Peris Llopis marinp@uef.fi